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We consider the Burgers equation with an external force. For the case of the 
force periodic in space and time we prove the existence of a solution periodic 
in space and time which is the limit of a wide class of solutions as t ~ ~ .  If the 
force is the product of a periodic function of x and white noise in time, we prove 
the existence of an invariant distribution concentrated on the space of space- 
periodic functions which is the limit of a wide class of distributions as t --* m. 

KEY W O R D S :  Burgers equation; white noise; local central limit theorem; 
partition function. 

1. F O R M U L A T I O N  OF THE RESULTS 

We consider the one-dimensional Burgers equation with force having the 
form 

u,+u.ux=Imxx+F'(x)  B(t), - o o  < x < o o  (1) 

Here F(x) is a C 1-periodic function of period Xo. The assumptions concern- 
ing B will be formulated later. The initial data u(x;0) are derivatives 
u(x; O) = v'(x), where v(x) are typical realizations of some random process. 
The probability distribution corresponding to v is denoted by Po, It is 
defined on the natural o--algebra of subsets of the space V of absolutely 
continuous functions v(x). We assume that: 

1. There exists a constant Co such that with Po-probability 1 

Iv(x)l ~< Co 

for all x. 
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2. A = E { e x p [ - v ( x ) ] }  does not depend on x. 

3. There exists 7, 0 < 7 < 1/2, such that for P0-almost every v(x), 

1 
lim sup ~ e ~(a+ ~ ~  A 

. . . . .  Eo,~0] 2[n ~] + 1 I k - - r n l  <~ [ f i t ]  
jrnJ <~ n , m  E ~ 1 

= 0  

It is easy to give concrete examples of Po for which condition 3 is true. 

T h e o r e m  1. Let B be a continuous periodic function of period %. 
There exists a solution u(~ t) of (1) periodic in x with period x0 and 
periodic in time with period %.such that for Po-a.e. v 

lim [u(x,  t ) -  u(~ t)] = 0 
t ~ o o  

for any x, - c o  < x < co. 

Remarks .  1. Our method of proof also gives an explicit expression 
for u(~ t). 

2. The theorem remains true if the force in the Burgers equation 
takes the form c~F(x, t)/dx, where F(x,  t) is a function periodic in space 
with period Xo and periodic in time with period To. 

3. The theorem remains true for bounded functions v such that 
v'(x)  ~ 0 as x ~ +co,  v(x)  ~ const as x ~ +co. 

4. The convergence in Theorem 1 is pointwise. After giving the proof, 
we discuss stronger statements concerning the character of convergence. 

In Theorem 2 we assume that B(t)  is a white noise. This means that 
for any tl, t2, tl < t2 ,  a random variable b( t l ,  ta)=~tt21B(z)dr is defined 
such that: 

(at) b( t l ,  tz) has the Gaussian distribution with mean value equal to 
zero and dispersion Eb2(t l ,  t2) = a(t2 - t j) for some a > 0. 

(a2) For nonoverlapping intervals (t'~, t;) and (t'l', t~) the random 
variables b(t'l, t'2) and b(t'[, t;') are independent. 

Denote by M ( ( t l ,  t2) the least a-algebra generated by all b(t'l, t'2), 
where tl < t] < t~ < t2, and let {T'} be the measure-preserving flow on the 
space of all random variables b(t'l, t'2), where each T t transforms M(t~,  t2) 
to M ( t ~ -  t, t 2 - - t )  and 

( Ttb )( t'l, t'2) = b( t~ - t', t 2 - -  t') 

t t ! ~ i  for any t l ,  t2, t~ + t < t ~ < t 2 < t 2 + t .  
Assume that Po satisfies the same conditions as in Theorem 1. 
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T h e o r e m  2. Let P, be the natural probability distribution on 
the space of solutions u(x, t) of (1) induced by Po, 0 < t < o o .  Then P, 
converges weakly as t ~ oo to some probability distribution Q which does 
not depend on Po and is concentrated on the space of functions periodic 
in x with period Xo. 

The proof of Theorem 1 is given in Section 2. In Section 3 we expound 
the proof  of Theorem 2. The actual statement which we show is the 
following. For  any e < 0  we find to(e), a set C~M(O,  to(~)), and a 
functional Hx({B( t l , t 2 ) } ,  O<<.tl, t2<<.to(e)) defined on C and such that 
Prob(C)  ~> 1 - e and if T 'b e C, then 

]u(x, t ) - H x ( b ( t l ,  t2) , t - t o ( e )<~ t l ,  t2 ~< t)l ~<~ 

In other words, for increasing t, the solution u(x, t) becomes a functional 
of the realization of white noise B(z), 0 < z < t, with "short memory." This 
memory can be estimated in a more precise way. The functional Hx 
depends periodically on x. Theorems 1 and 2 are valid also for the multi- 
dimensional Burgers equation. Only small modifications in the proofs are 
needed. 

2. PROOF OF T H E O R E M  1 

After the appropriate rescaling of x and # we may assume that the 
period % =  1. We use the Cole -Hopf  substitution u =  -2#(~0x/cp), (1'2) and 
get for (p the equation 

1 
q), = #~oxx - -z-- F(x) B(t)cp (2) 

zFI 

The Feynman-Kac  formula (3) makes it possible to write down cp as a 
functional integral. Namely, denote by H ~t1''2~ the corresponding Wiener Wi, W2 
measure on the space of continuous functions w(r), t 2 ~<'c ~< tl, such that 
w(tl)  = wl,  w(t2) = w2. Then 

f 
oO 

q)(x; t ) =  dy { e x p [ - v ( y ) ]  } 
--OC3 

x f { e x p l f o F ( W ( z ) ) B ( z ) d z ] } d I I ( : , ~  ) ,3) 

Put t = t o ,  t - j = t j ,  j> /1 ,  and j~7/1, and find r such that t r+2<  
0 < t r + l .  Fix the numbers al ,  a2 ..... at, a t+ l ,  a je  [0, x0) and rewrite (3) as 
follows: 
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m l , m 2 , . . . ,  m r + l  
m j  ~ Z 1 

x ~I K,j(aj_ 1 + mjxo, aj q- mjXo) 
j = 2  

• Kf(a,.+mrxo, ar+l +mr+lXo) e -'~(ar~+mr*~x~ (4) 
Here 

Ktj(W1, W2) f exp f (W(z) )B(z )d t  ""(w~,w2)( ) 

Ku(W1, W2)= f{exp [fs F(W(z))B(z)dt]} dH~~ 

The periodicity of F in space and that of B in time imply the following 
relations: 

1. K~j(W1, W2)=Kts(Wl+mxo, W2+mxo), 2<~j<~r 

for all m ~ 7/1. 

2. Kt2(W1, W:)=K,3(WI, W2) . . . .  K t r (W 1, W2)=K(Wt,  W2) 

The functions Kt~(wl, w2), KF(wI, w2)depend on the fractional part {t} 
and thus are periodic in time with period 1. Introduce the sums 

Z,L(x; a,)= ~ K,t(x, al +mxo) 
r n ~  Z 1 

Z,j(aj_ 1, as) = Zts(as 1 ,  aj) 

= ~ Ktj(aj_l,aj+mxo) , 2<~j~r 
m ~  aV 1 

Zf(ar ,  ar+l)  = 2 gf (ar 'ar+l- '} -mxO) 
m g  7/l 

and the probabilities 

p,~(x, al +mlxo) 

= Z~I(x, al) Kt~(x, al +mlxo) 

p,j(aj_ l + ms_ lXo, aj + mjxo) 

= Z ~ 1 ( a j _ l , a j ) K t j ( a j _ l q - m j _ l x o ,  a jq-mjxo) ,  2<~j~r 

pf(a~+m~xo;a~+l +mr+lXo) 

= z f l ( a r ,  ar + l) g f (ar  + mrXo; ar + ~ + mr + l Xo) 
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Consider the sequence of independent random variables ~ ,  
~2 ..... ~r+l, where each variable ~s takes values m e Y  ~, and ~ has the 
distribution with the probabilities p~(x, a~ + mxo), while ~s, 2 ~< j~< r, have 
the distribution with the probabilities P,j(as- 1, as + mxo) = 
p(aj_l, as+mxo), which depends only on {t} but not on j, and ~r+l has 
the distribution with the probabilities pf(a~,ar+~+mxo), which also 
depend only on {t}. Then the sum in (4) can be rewritten as follows: 

Z = ~  (al, a2,..., at+l) 

= ~ Ktl(x, al + mzxo) 
m l , m 2 , . . . ,  mr+ 1 

x f l  Kt,(as_z+m j lxo, as+msxo) 
j = 2  

x Kf(ar+mrx o, ar+l +mr+lXo) e -v(ar+l+mr+~x~ 

= Zt~(x; a,) Z(al, a2)-..  Z(ar_ 1 , a,) Zf(a~, a~+ ~) 

x ~ p~i(x,a,+mlxo) 
ml ,m2,..., m r + l  

x ~[ ps(as_1+ms_lxo, as+msxo) 
j = 2  

x pf(a~+m~xo, a~+~ +mr+  iXo) e -v(a~+l+m~--lx~ 

= a,) (I Zs(as-1, as) Zi(a , 
j = 2  

• Z p,l(X, al+  Xo  (I Ps(as- , j+ sXo) 
nl ,~r+l  j = 2  

• Pf(ar, ar+ 1 -~-nr+lX0) e v(a~+~+(~+ -.. +-~+,)x0~ 
r 

=Z,~(x;al) l-[ Z(as z,aj) Zf(a~,ar+l) 
j = 2  

(5) 

where Er is the expectation with respect to the joint distribution of the 
random variables ~j, l ~ < j ~ < r + l .  Put # ( a l ) = E ~ l ,  #(aj_z,aj)=E~j 
for l ~ < j ~ < r + l ,  d(az)=D(~)=Er 2, d(aj 1,as)=Er s -  
,tt(aj- 1, aj)) 2, m=#(al)+Z~+-l#(aj 1, aj),andD=d(al~+X~+ld(aj,1- z...,j=2 z, aj). 

Lemma 1. Under the conditions of Theorem 1, the sequence of 
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r andom variables ~ ,  42 ..... {r+~ satisfies the central local limit theorem 
of probabili ty theory in the form 

sup P ~ ( ~ I +  ""  +~.r+l  = m )  
al,..-, ar+l 

where et tends to zero as t -+ oo. 

1 - - (m M)2/2D I 
(2~D)1/2 e ~< ~, (6) 

The statement of Lemma 1 means that  the convergence to zero of the 
difference in (6) is uniform in rn~ and a~, a 2 ..... ar+x. Lemma 1 can be 
easily proven by s tandard methods of probabili ty theory (see, e.g., ref. 4). 
We omit the proof. Dur ing the proof  one must  keep in mind the bounded-  
ness of [FI and [B]. 

Consider in more  detail the expectation 

E = Er e - v0(ar + 1 + (r + ' + Cr + 1 ) x0) 

In view of Lemma 1 and property 1 of Po, it is equal to 

E = Z  e v~162 + ... + ~ r + x = m }  
m 

= ~ e v0(,,+l + mxo) ~ e-  ('~- M)2/2D "Jr" e~176 
m (2~D) m 

where 6, --, 0 as t --* oo. Using proper ty  3 of Po, we easily get 

where 611) ~ 0 as t ~ oo uniformly in al,..., a t+ 1- Thus, 

q~(x;t)~A f . . . f  daldO2...dardOr+lZtl(x;al) 

x ffI Z(ai 1,aj)Zf(a,  ar+l) 
j = 2  

(7) 

The expression (7) can be studied with the methods of statistical 
mechanics. Consider Z(a', a") as a transfer matrix of a one-dimensional 
system and find its positive eigenvector e(a) and the corresponding positive 
eigenvalue 2: 

f e(a') Z(a', a") da'= 2e(a") 
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Introduce the Markov transition operator 7r with the transition 
probabilities 

Z(a', a") e(a') ~(a', a")- 
Ze(a') 

giving the density of the transition a" -* a'. Then (7) can be rewritten as 

r.p(x; t )~  A2r f ... f da~ ...da, dar + l Z~(x; al lEe(al)]  -1 x(a2, a3) 

x '"~c(ar 1, ar)Z(a~,a,+l)e(G) 

=A2r f zt~(x;al)Ee(al)] 1 ~r)(al, ar) 

x Z(ar, a~+l) e(ar) dal da, da~+l 

The ergodic theorem for the Markov chain generated by the operator 7r 
shows that ~r)(a~, G) asymptotically does not depend on a~ and is 
exponentially close to the stationary distribution of this chain. Denote this 
distribution by ~(aa). It is well known that it has the form e(a~)e*(a~), 
where e*(a~) is the positive eigenvector of the adjoint operator, i.e., 

f Z(a', a") e*(a") = Ze*(a') da" 

Thus 

(p(x, t) ~ A. A12 r f Z~l(x; al) e*(al) dal 

where A 1 = ~  Z(ar, at+l)  e(ar) dar dG+l. 
Taking the derivative of the rhs of (4) with respect to x and making 

the same analysis, we find a similar expression for ~0x: 

( .  

qOx(X, t) ~ AA 1)s J -~x ztt(x; al ) e(al) dal 

Finally we get that for t-* oo 

q~x(X; t) ~ [~Zq(x; al)/Ox ] e(al) da 1 
u = - 2 #  ~o(x;t~ ~21~ ~Z,,(x;al)e(al)dal (8) 

The rhs of (8) is a solution of (1) periodic in space and time and (8) gives 
the assertion of Theorem 1. 
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It is clear that the properties of smoothness of 

[ O Z t l ( X ;  al)/~x ] e ( a l )  d a ~  

u~~ t) = -2/~ S ~ Z~(x; a,) e(a~) d~ 1 

depend on the smoothness of F. In particular, if F(x)eCk(S1), then 
u(~ t )e  C k- 1($1) for any t and one can prove easily the convergence of 
(U/Oxi) u(x; t), i<<.k- 1, to (#i/#xi) u(~ t). Also, the convergence in 
Theorem ! is uniform in x on any compact subset of R 1. Certainly in 
general it cannot be uniform on the whole line, because of fluctuations of v. 

3. P R O O F  OF T H E O R E M  2 

Again we use the Cole Hopf substitution, which now gives the expres- 
sion for ~o in the form 

~p(x; t) = f ~  dy {exp [ -v (y ) ]}  

{ [ foF(  ) ] )  ,r176 ' W) (9) x exp w(r))db(z . . .  (~,y), 

Here S0 F(w(z))db(z) is a stochastic integral, and B(z)= db(z)/ctr is white 
noise. It is worthwhile to stress that {w(z)} and {b(z, 0)} are statistically 
independent Brownian motions. Therefore cp(x; t) is random because of the 
randomness of b. We proceed in the same way as before. Take an integer 
r = r(t) for which r/t --* 1 as t ~ oo and divide the interval (0, t) into r equal 
parts. Denote the points of the division by t = to > t l  > " ' "  > tr = 0r and 
rewrite (9) as follows: 

cp(x; t )=  I" "" ~ dal ""dar ~'~ gl(x' al + mlxo) 
m 1 ,..., m r 
mj  ~ Z 1 

x Kj(aj_l+ms lxo, as+mjxo)exp[-v(ar+mrxo)] (10) 

where 

;{  1 Kj(a', a " ) =  exp F(w(z)) db(r) a',a" 

In the case of white noise the operators Ks(d, a") are random and statisti- 
cally independent in a natural sense for different j. The periodicity of F in 
x implies 

Kj(a',a")=Kj(a'+mxo, a"+mxo) , meY_ 1 
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This gives again a possibility to reduce the summation ~'ml ....... to a 
problem concerning independent differently distributed random variables. 
Namely, introduce the partition functions 

Zl(x,  al) = E Kl(x, al + mxo) 
m 

Z j ( a j - 1 ,  aJ) ~- E K j ( a j _ , ,  a j + m x o )  
mE~71 

and the corresponding probabilities 

pl(x, al + m~ Xo) = Z l l ( X ,  al) K(x, al + ml Xo) 

pj(aj l + m j  lxo, aj+mjxo) 

= Z f ' ( a j _ l ,  aj)Kj(aj 1 +mj- lXo ,  aj+mjxo) 

=ZT l (a j  1, aj) Kj(aj ~ , a j + ( m j - m j _ l ) X o )  

Then (10) takes the form 

~O(X; t) ~- f da I d a 2 . . ,  da r Z l ( X  , a l )  Z2(a l ,  a2)-" Zr(ar_l, ar) 

• Z pl(x, al +nlxo)  
nl,n2,..., nrE 271 

x P2(al, a2 + n2xo).. ,  pr(ar 1, ar + nrXo) 

x e x p { - - r [ a r + ( n l +  ... +nr) xo]} 

Let ~1,..-, ~r be r independent integer-valued random variables where 
each ~s has the distribution ps(as_ 1, as+ mxo), ao = x. We can write 

E pl(x, al-bnlxo)p2(al,a2k-Fi2Xo)'"pr(ar l, ar+nrXo) 
nl ~ •2 ,..., nr ~ 271 

x exp{ --r[ar + (nl + ... + Fir) XO'] } 

= E c e x p { - - r [ a r + ( ~ l +  ... +~r) X0]} (11) 

Again as in Section 2 we encounter two problems. The first one con- 
cerns the validity of the local central limit theorem of probability theory, 
while the second one consists of the possibility of replacing the average 
(11) by its mathematical expectation A. Since the distribution Po has the 
properties 1-3 (see Section 1), the second problem is simple because the 
local central limit theorem and the stability of the averages (see property 3) 
of the distribution Po show that (11) is equivalent to A as t ~ oo. 
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In order to study the local central limit theorem, introduce 

#1(ai) = E~I, #:(aj_ 1, a:)=E~j, dl(al)=D(~l) 

dj (a j_ l ,  a j )=D(~j )  , 2<<.j<-%r, J/{r=#l(al)+ ~ #j(aj_~,a s) 
j = 2  

r 

Dr = d(a) + 4 % - , ,  aj) 
j = 2  

Certainly, Jgr and Dr are andom variables, since they are functions of b. 
Let t--+ oo. Consider the probability Pb(t) (with respect to b) that the 

random variables {1, 42 ..... {r satisfy the local central limit theorem (lclt) in 
the form described in the Lemma 1. 

kemrna  3. Pb(t) --+ 1 as t --+ oc. 

The proof of the lemma is simple and we shall describe only the main 
steps. It uses characteristic functions. It is easy to show that there exists a 
finite covering of S 1 by arcs Co, C1, C2,..., C,, p > 0 ,  a > 0 ,  such that Co 
is a symmetric neighborhood of 1 and for any C s, 1 ~< j ~< s, the probability 
(with respect to B) that the characteristic function has on (7: the absolute 
value less than 1 - ~  is greater than p. This gives easily an exponential 
estimation for the characteristic function of the sum Y~ 1 {s outside a small 
neighborhood of 1. The rest follows the traditional way of proving the local 
central limit theorem. ~4) 

Thus, under the conditions of Theorem 1 and for those b for which the 
lclt is true we can write again 

q)(x;t)~A f dal da2"'darZl(X, al) ~ Zj(aj_l,~lj) 
j = 2  

(12) 

Now Z:(a:_ 1, a:) are b-independent random variables. The analysis of (12) 
can be done again with the help of the theory of non-homogeneous 
Markov chains. 

Namely, consider the conditional probabilities 

= I Z2(al, a2) dal 

~Zz(a, ,  a2) . . .Z : (a j  1, a:) Zj+l(aj ,  aj+l) da I . . .da j  ! 

~:(aja:+l)= ~ Z2(al, az) '"Z:(a:  ~, aj) Zj+l(a:, aj+l)dal ...daj 
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We can use them to rewrite the rhs of (12) in another way: 

~o(x; t ) ~ A  ~r "~ f ZI(x, al) 7t1(al I a2) 7l2(a2 I a 3 ) ' "  

X 7"Cr_l(ar_ 1 I ar) TZr(ar)dal . . . d a  r 

where 

- f  da 1 d a r Z 2 ( a l , a 2 )  "Zr(ar 1 ,ar)  ~r . . . . . .  

plays the role of partition function. For the derivative (px(x; t) we have a 
similar expression: 

~Z 1 (. 
~Ox(X; t) ~ A~,r j ~-x  (x, al) ~1(al I az) rc2(a2 I a3) '-- 

X rC r l (ar_ 1 ]ar) x(a~) dal . . ,  dar 

Therefore this yields for the solution u(x; t) of the Burgers equation 

~ox(x; t) 
u(x, t )= - 2 1 . t -  

~0(x; t) 
--2# ~ (~?Zl/c3x)(x, al) gl(al I a 2 ) ' "  

~ZI(x, al )  TCl(al I a2)" '" 

�9 ..rcr_ 1(a~_1 [ar) rC(ar) d a l . . ,  da r 
x 

�9 ..Tz~ 1(ar 1 I a r ) ~ Z ( a r ) d a l " " d a r  

__~ (~Zl/aX)(X, al) ~t(al I ak) rrk(ak+ 1 [ a , ) . - -  

S ZI(x, al) rq(a, [ a~) gk(ak+ 1 I ak)""  

X 
rL ~(ar I I at) ~r(ar) dal dak.. .dar 
1Zr l ( a r -  1 [ a~) ~z(a~) da 1 d a k . . ,  da r 

for any k. Here g(a 1 l a~) is the conditional density corresponding to the 
joint probability density 

Z2(al,  a 2 ) " "  ar(ar  1, a~) da 1 da2.., da~ 
Z 

Now we remark that for large k the conditional distribution n(al lak)  
becomes almost independent of ak, ak+l,..., ar and thus independent of 
B(v), 0 <~ z ~ tk. This follows easily from the ergodic theorem for Markov 
chains. To be more precise, let us formulate the following lemma. 

I . emma  4. There exist positive constants p < 1 and C2< oo and 
events SkeB(0,  k), k =  1,2 ..... Pb(Sk)> 1--C2p k and a functional 
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H(~)(b(tl ,  t2), 0<~ t 1, t2<~k) defined on B(0, k) such that if (b(tl ,  t2), 
t - k ~< t~ < t2 ~< t) ~ Sk, then 

[u(x, t ) -  H(f)(b(t~, t2), t - k  <<. tl < t2 <<. t)l <~ Czp k 

The functional H(~ k~ is a periodic function of x of period Xo. 

The proof of the lemma goes as follows. The transition densities 
zj(aj_ 11 aft are bigger than some constant a > 0 with a positive probabil- 
ity. It is easy to show that with the probability not less than 1 - C 2 p  k the 
number of such j is bigger then /?k for some /~ > 0. Then the conditional 
distribution ~(a~ [ ak) does not depend on k. The periodicity of H~ (k~ on x 
follows easily from the expressions for q~(x; t). 
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